培训对象:
高级程序员、资深开发人员、人工智能工程师、图像设计人员、机器学习工程师、程序员、模式识别工程师。
学员基础:
1,对IT系统设计有一定的理论与实践经验。
2,对模式识别有一定的兴趣。
培训目标:
1,全面了解模式识别领域相关知识。
2,能将模式识别领域的技术应用于实际项目。
3,能将模式识别领域的技术和人工智能的其他技术进行结合,做扩展应用
课程大纲:
第一讲 模式识别简介
1.1 什么是模式识别
1.2 为什么要模式识别
1.3 怎样来进行模式识别
1.4 模式识别的现实案例举例
第二讲 贝叶斯决策
2.1 最小错误率贝叶斯决策
2.2 最小风险错误率贝叶斯决策
2.3 ROC曲线
2.4 贝叶斯决策在语音识别中的应用案例
第三讲 朴素贝叶斯决策
3.1为什么要引入朴素贝叶斯决策
3.2 如何进行朴素贝叶斯决策
3.3 朴素贝叶斯在文本识别中的应用案例
第四讲 线性分类器
4.1 线性分类器是什么
4.2 Fisher线性判别的动机
4.3 Fisher线性判别的内涵是什么
4.4 Fisher线性判别在人脸检测中的应用案例
第五讲 人工神经网络
5.1 人工神经网络的设计动机是什么
5.2 单个神经元的功能
5.3人工神经网络的优化以及误差逆传播(BP)算法
5.4人工神经网络中需要注意的问题
5.5 人工神经网络在表情识别、流量预测中的应用案例
第六讲 最优分类面和支持向量机(SVM)
6.1 什么是最优分类面
6.2 SVM的本质是什么
6.3 SVM线性不可分时怎么办
6.4 SVM中核函数如何选择
6.5 SVM在车牌识别中的应用案例
第七讲 非线性分类器
7.1 什么时候使用非线性分类器
7.2 如何设计非线性分类器
7.3 非线性分类器在光学字符识别中的应用案例
第八讲 近邻法
8.1 近邻法的思想是什么
8.2 近邻法的缺点以及改进方案
8.3 近邻法中的过学习问题及解决方案
8.4 近邻法在相亲网站中的应用案例
第九讲 决策树
9.1 什么是非数值特征
9.2 为什么要引入决策树
9.3 如何设计决策树
9.4 如何构造随机森林
9.5 决策树在医疗系统中的应用案例
第十讲 Boosting
10.1 什么是Boosting算法
10.2 为什么要Boosting
10.3 如何Boosting
10.4 介绍Boosting算法典型代表Adaboost
10.5 Adaboost在人脸检测中的应用案例
第十一讲 特征选择
11.1 为什么要特征提取和特征选择
11.2 特征选择的最优算法
11.3 特征选择的次优算法
11.4 特征选择的遗传算法
11.5 特征选择在优化系统中的应用
第十二讲 特征提取
12.1 特征提取的一般性方法
12.2 主成分分析
12.3 主成分分析在扭曲指纹识别中的应用案例
12.4 K-L变换
12.5 K-L变换在人脸识别中的应用案例
第十三讲 非监督学习方法
13.1 什么是非监督学习?
13.2 单峰子集法
13.3 C均值方法
13.4 模糊C均值方法和改进的模糊C均值方法
13.5 非监督学习方法在石油勘探中的应用案例